咨询热线
HOTLINE
010-61258796

利发国际娱乐

News

【利发国际娱乐官网】气体吸附分析技术—孔结构与物理吸附经典问答之基础篇

日期: 2016-12-01
浏览次数: 240
分享到:

 

目前,气体吸附分析技术作为多孔材料比表面和孔径分布分析的不可或缺的手段,得到了广泛应用。物理吸附分析不仅应用于传统的催化领域,而且渗透到新能源材料、环境工程等诸多领域。

 

本专题分为基础篇,实验篇和应用篇,旨在以实用为目的,力求避免冗余和数学公式,按实验的思维顺序逐步理清物理吸附相关的疑难点。当然,对于一些比较复杂的问题,我们将会专门出专题文章进行介绍。

 

来源:材料人

 

1. 什么是表面和表面积?   

 

表面是固体与周围环境,特别是液体和气体相互影响的部分;表面的大小即表面积。表面积可以通过颗粒分割(减小粒度)和生成孔隙而增加,也可以通过烧结、熔融和生长而减小。

 

2. 什么是比表面积?

 

为什么表面积如此重要? 比表面积英文为specific surface area,指的是单位质量物质所具有的总面积。分外表面积、内表面积两类。国际标准单位为㎡/g。表面积是固体与周围环境,特别是液体和气体相互作用的手段和途径。一般有下列三种作用:1) 固体-固体之间的作用:表现为自动粘结,流动性(流沙),压塑性等。2) 固体-液体之间的作用:表现为浸润,非浸润,吸附能力等。3) 固体-气体之间的作用:表现为吸附,催化能力等。

 

3. 什么是孔?   

 

根据ISO15901中的定义,不同的孔(微孔、介孔和大孔)可视作固体内的孔、通道或空腔,或者是形成床层、压制体以及团聚体的固体颗粒间的空间(如裂缝或空隙)。

 

4. 什么是开孔和闭孔?

 

多孔固体中与外界连通的空腔和孔道称为开孔(openpore),包括交联孔、通孔和盲孔。这些孔道的表面积可以通过气体吸附法进行分析。除了可测定孔外,固体中可能还有一些孔,这些孔与外表面不相通,且流体不能渗入,因此不在气体吸附法或压汞法的测定范围内。不与外界连通的孔称为闭孔(closepore)开孔与闭孔大多为在多孔固体材料制备过程中形成的,有时也可在后处理过程中形成,如高温烧结可使开孔变为闭孔。

气体吸附分析技术—孔结构与物理吸附经典问答之基础篇

 

5. 什么是孔隙度?

 

孔隙度是指深度大于宽度的表面特征,一般用孔径及其分布和总孔体积表征。

 

6.什么是多孔材料?

 

多孔材料是一种由相互贯通或封闭的孔洞构成网络结构的材料,孔洞的边界或表面由支柱或平板构成。多孔材料可表现为细或粗的粉体、压制体、挤出体、片体或块体等形式。其表征通常包括孔径分布和总孔体积或孔隙度的测定。在某些场合,也需要考察其孔隙形状和流通性,并测定内表面和外表面面积。

 

7. 真实的表面是什么样的?  

 

立方体和球体是在数学计算上最简单的理想模型。对于边长为L cm 立方体,其表面积为6L2cm2。但在现实情况中,数学中的理想几何形状是根本不存在的,因为在显微镜下看所有真实表面,它们都是有缺陷,都是凸凹不平的。如果有一个“超级显微镜”,你就能看到表面有多粗糙,这不仅是由于空隙,孔道,台阶和其它的非理想情况,更是由于原子或分子轨道的分布。这些表面的不规则性总是创造出比相应的理论面积更大的真实表面积。

 

8. 影响表面积的因素有哪些?

 

影响表面积大小的因素包括颗粒大小(粒径)和颗粒形状(粒形)以及含孔量。设想一个一米边长的真实立方体被切割成一微米(10-6m)的小立方体, 这样将产生1018个颗粒。每个颗粒暴露的面积是6x10-12 平方米(m2), 所有颗粒贡献的总面积则为6x106 m2。与未切割材料比较,这种暴露面积的百万倍的增加是超细粉体具有大表面积的典型。除了粒度以外,颗粒形状也对粉体的表面积有所贡献。在所有几何形状中,球形具有最小的面积/体积比,但一串原子如果仅沿着链轴线键合,则会有最大的面积/体积比。所有的颗粒物质都具有几何形状,因而具有在两个极端之间的表面积。通过比较两个有相同组成和相同质量,但形状分别为球形和立方体的颗粒表面积,很容易看到颗粒形状对表面积的影响。计算得出,在颗粒重量相同的情况下,立方体面积大于球体面积。因为粒径、粒形和孔隙度的不同,比表面积的范围可以有极大的变化,但孔的影响往往使粒径和外部形状因素的影响完全湮没。由密度大约为3g/cm30.1 微米半径球形颗粒组成的粉末比表面大约为10m2/g,而1.0 微米半径的类似颗粒比表面会减少10倍;但是如果同样的1.0 微米半径颗粒含有大量的孔隙,其比表面可能超过1000m2/g。这清楚地表明孔对表面积的重要贡献。

 

9. 在粒度分析仪上计算出的表面积值准确吗?  

 

尽管颗粒形状能被假设为规则的几何形,但是绝大多数的情况下它是不规则的,只不过目前流行的粒度测量方法是基于“等效球体积”。如果试图利用粒度测量方法(包括激光衍射法、光散射法、电域敏感法、沉降法、透过法、筛分法和电子显微镜法)测量比表面,由于粒形、表面的不规则及孔隙度的影响,其结果会比真值严重偏小,甚至相差1000 倍以上。因此,由粒径计算表面积只能通过球形或其它规则几何形状的绝对假设建立一个低限值。

 

10. 孔的类型有哪些?

 

工业催化剂或载体作为多孔材料,是具有发达孔系的颗粒集合体。一般情况是一定的原子(分子)或离子按照晶体结构规则组成含有微孔的纳米级晶粒;而因制备化学条件和化学组成的不同,若干晶粒又可聚集为大小不一的微米级颗粒,然后工业成型成更大的团粒或有不同几何外形的颗粒集合体。

气体吸附分析技术—孔结构与物理吸附经典问答之基础篇

 

不同的制备方法会生成不同的孔结构。如,高温烧结或挤压成型的多孔固体的孔结构是无规则的;而由胶体在充水的初级结构中沉淀、收缩、老化,会产生特征性的微孔结构(典型例子如水泥和石膏)。

沸石和分子筛具有稳定的晶体结构,它内部的孔是由晶体内的孔道、缝隙或笼组成的具有均匀尺寸和规则的形状。在沸石内部,笼是由直径0.4–1nm 的窗口相连。一个笼可以看作是一个球形孔。

所以,实际体积中的孔结构都是复杂的,是由不同类型的孔组成的。在分子水平上看,孔的内表面几乎都是不光滑的。但是,我们可以从几个基本类型开始(如图),然后建立它们的各种组合。

 

最典型的是筒形孔(圆柱孔),它是孔分布计算的一个基础模型。

挤压固化但还未烧结的球形或多面体粒子多是锥形孔(楔形孔,棱锥形空隙)。

裂隙孔是由粒子间接触或堆砌而形成的空间。这个模型也是溶涨和凝聚现象的计算基础。

墨水瓶孔都有孔颈。孔径是较大孔隙的颈口,因此墨水瓶孔也可以看成是球形孔与筒形孔的组合。

沸石类的孔隙是稳定的,但被“颈口”所控制,它可以被看作是筒形孔和墨水瓶孔的中间状态。

 

11. 孔宽是如何分类的? 

 

按照国际纯粹与应用化学协会(IUPAC)在1985 年的定义和分类,孔宽即孔直径(对筒形孔)或两个相对孔壁间的距离(对裂隙孔)。因此,

 

(i)微孔(micropore)是指内部孔宽小于2nm 的孔;

(ii)介孔(mesopore)是宽度介于2nm 50nm 的孔;

(iii)大孔(macropore)是孔宽大于50nm 的孔。

 

2015 年,IUPAC 对孔径分类又进行了细分和补充,即

(iv)纳米孔(nanopore):包括微孔、介孔和大孔,但上限仅到100nm

(v) 超微孔(ultramicropore):孔宽小于0.7nm 的较窄微孔;

(vi)极微孔(supermicropore):孔宽大于0.7nm 的较宽微孔。

 

12. 比表面和孔径分析方法都有哪些种类?

 

这些方法包括气体吸附法、压汞法、电子显微镜法(SEM 或TEM)、小角X 光散射(SAXS)和小角中子散射(SANS)等。2010 年,美国分散技术公司(DT)和美国康塔仪器公司还联合开发了电声电振法,比利时Occhio 公司开发了图像法大孔分析技术。总体来说,每种方法都在孔径分析方面有其应用的局限性。

 

纵观各种孔径表征的不同方法,气体吸附法是最普遍的方法,因为其孔径测量范围从0.35nm到100nm 以上,涵盖了全部微孔和介孔,甚至延伸到大孔。另外,气体吸附技术相对于其它方法,容易操作,成本较低。如果气体吸附法结合压汞法,则孔径分析范围就可以覆盖从大约0.35nm 1mm 的范围。气体吸附法也是测量所有表面的最佳方法, 包括不规则的表面和开孔内部的面积。

 

 

13. 什么是吸附?它与吸收有什么区别?  

 

固体表面的气体与液体有在固体表面自动聚集,以求降低表面能的趋势。这种固体表面的气体或液体的浓度高于其本体浓度的现象,称为固体的表面吸(adsorption)。整个固体表面吸附周围气体分子的过程称为气体吸附。事实证明,监测气体吸附过程能够得到丰富的关于固体特征的有用信息。

 

当吸附物质分子穿透表面层,进入松散固体的结构中,这个过程叫吸收(absorption)。有时,区分吸附和吸收之间的差别是困难的,甚至是不可能的,这样,更方便或更广泛使用的术语吸着(sorption)就包含了吸附和吸收这两种现象,以及由此导出的术语:吸着剂(sorbent),吸着物(sorbate)和吸着物质或吸着性(sorptive)。

 

当吸附(adsorption)用于表示过程时,其对应的的逆过程是脱附(解吸,desorption)。在脱附过程中,由于分子热运动,能量大的分子可以挣脱掉束缚力而脱离表面,吸附量逐渐减小。名词“吸附”和“脱附”后来作为形容词,表示用实验测定吸附量的走向研究,即吸附曲线(或点)或脱附曲线(或点)。当吸附曲线和脱附曲线不重合时,会产生吸附回滞(Adsorption hysteresis)。

 

14. 吸附的本质是什么?

 

一切物质都是由分子组成的,而原子构成了分子的基础。气态的原子和分子可以自由地运动。相反,固态时原子由于相邻原子间的静电引力而处于固定的位置。但固体最外层(或表面)的原子比内层原子周围具有更少的相邻原子。这种最外层原子的受力失衡导致了表面能的产生。固体表面上的原子与液体一样,受力都是不均匀的,但是它不像液体表面分子可以移动,而是定位的。因此,大多数固体比液体具有更高的表面能。为了弥补这种静电引力不平衡,表面原子就会吸附周围空气中的气体分子。

 

当一个颗粒被切割成超细粉体时,因表面积迅速增加,而导致极高的表面能,从而导致颗粒间(固-固作用)发生团聚或聚集以降低表面能。

气体吸附分析技术—孔结构与物理吸附经典问答之基础篇

 

15. 什么是吸附剂、吸附质、吸附物质和吸附空间?

 

在一般情况下,吸附被定义为在一个界面的附近富集分子,原子或离子的现象。在气/固系统的情况下,吸附发生在邻近固体表面的结构上。发生吸附的固体材料称为吸附剂(adsorbent);处于被吸附状态的物质称为吸附质(adsorbate);处于流动相中,但与吸附质组成相同的物质称为(被)吸附物质(adsorptive)。吸附空间是指由吸附质所占空间。吸附过程是物理吸附或化学吸附。

 

吸附系统是由三个区域组成的:固体,气体和吸附空间(例如,吸附层)。吸附空间的内容量就是吸附量(the amount adsorbed)。吸附量依赖于体积、质量和吸附空间。

 

16. 什么是物理吸附和化学吸附?

 

气体分子在固体表面的吸附机理极为复杂,其中包含物理吸附和化学吸附。

气体吸附分析技术—孔结构与物理吸附经典问答之基础篇

由分子间作用力(范德华力)产生的吸附称为物理吸附。物理吸附是一个普遍的现象,它存在于被带入并接触吸附气体(吸附物质)的固体(吸附剂)表面。所涉及的分子间作用力都是相同类型的,例如能导致实际气体的缺陷和蒸汽的凝聚。除了吸引色散力和近距离的排斥力外,由于吸附剂和吸附物质的特定几何形状和外层电子性质,通常还会发生特定分子间的相互作用(例如,极化、场-偶极、场梯度的四极矩)。

 

任何分子间都有作用力,所以物理吸附无选择性,活化能小,吸附易,脱附也容易。它可以是单分子层吸附和多分子层吸附。

 

由分子间形成化学键而产生的吸附称为化学吸附;它有选择性,活化能大,吸附难,脱附也难,往往需要较高的温度。化学吸附一定是单分子层吸附。

 

实际吸附可能同时存在物理吸附与化学吸附;先物理吸附后再化学吸附。吸附量可以用标准大气压下单位质量的样品(吸附剂)上吸附物质(吸附质)的体积量度,可以用ml/g 或 cc/g@STP表示。  

 

在低温下以发生物理吸附为主, 而可能的化学吸附发生在高温下(发生了特异性反应).全过程涉及高真空,低温,高温,高精度真空量度,阀门按事先设定的程序自动开关等问题。

 

17. 介孔材料的物理吸附过程是怎样的? 

 

根据IUPAC 于2015 年发布的报告,发生在介孔材料上的物理吸附都有以下三个左右的不同阶段:

1) 单分子层吸附(monolayermultilayer):所有的被吸附分子都与吸附剂的表面层接触。

2) 多层吸附(multilayeradsorption):吸附空间容纳了一层以上的分子,使得并非所有的吸附分子都与吸附剂表面直接接触。在介孔中,多层吸附后紧跟着会发生在孔道中的凝聚。

3) 毛细管(或孔)凝聚现象(Capillary(orpore)condensation):即一种气体在压力p 小于其饱和压力p0 的情况下,在孔道中冷凝成液体状的相态。毛细管凝聚反映了在一个有限的体积系统中发生的气-液相变。术语“毛细管(或孔)凝聚”不能用于描述微孔填充过程,因为在微孔中不涉及气-液之间的相变。

 

18. 什么是气体吸附等温线?

 

如果绝对温度,压力和气体(吸附质)和表面(吸附剂)的作用能不变,则在一个特定表面的吸附量是不变的。因为固体表面对气体的吸附量是温度、压力和亲和力或作用能的函数,所以我们在恒定温度下,就可以用平衡压力对单位重量吸附剂的吸附量作图。这种在恒定温度下,吸附量对压力变化的曲线就是特定气-固界面的吸附等温线。

 

19. 如何利用气体吸附原理分析比表面?

 

固体多孔材料的单位重量的表面积(即比表面积)是重要的物理参数。真实表面包括不规则的表面和孔的内部表面。它们的面积无法从颗粒大小的信息中计算出来,但却可以通过在原子水平上吸附某种不活动的或惰性气体来确定。气体的吸附量,不仅仅是暴露表面总量的函数,还是 (i) 温度,(ii) 气体压力,以及 (iii) 气体和固体之间发生反应强度的函数。因为多数气体和固体之间相互作用微弱,为使其发生相当的吸附,使其吸附量足以覆盖整个表面,必须将表面充分冷却到气体的沸点温度。随着气体压力的提高,表面吸附量会以一种非线型方式增加。但是,当气体以一个原子厚度全部覆盖表面后(单分子层气体),对冷气体的吸附并没有停止!随着相对压力的提高,超量的气体被吸附从而构成“多分子层”,进而可能进一步液化而填满整个孔道。

气体吸附分析技术—孔结构与物理吸附经典问答之基础篇

为了达到上述目的,首先要把样品进行真空脱气,对样品表面进行清洁;如果用氮气作为分子探针(尺子),需要随后将样品连同样品管称重后放入液氮中(-273℃),有控制地通入已由压力传感器计量的氮气,记录样品的吸附量。该过程相当复杂和漫长。在取得不同压力下样品饱和吸附量的数据后,再通过由样品性质决定的经验公式(模型)计算出所需要的结果。

打一个不完全恰当的比方:要测量一间屋子的面积,但是除了有许多篮球并没有合适的尺子,而篮球的直径和截面积是已知的。于是,在测量屋子的面积之前,首先要将屋子中放置的家具搬出去,然后往屋里扔篮球,扔进来的数目是可以控制并计算出来的,等篮球铺满了屋子,我们将篮球的截面积乘以扔进来的篮球数就能估算出该房间的面积。同理,接着扔篮球,直至这个房间都被篮球充满直到房顶,我们就能推断出这个房间的空间大小。物理吸附仪就是为了实现这整个过程而设计的。

 

—来源:材料人

 

News / 推荐新闻 More
2017 - 08 - 12
当前针对恶臭气体治理的方法主要包括UV高效光解净化法、植物喷洒液除臭法、生物分解法、等离子法和活性炭吸附法等方法,每一种方法技术原理、除臭效率、可处理气体成分、使用寿命和运行维护费用都不尽相同,用户需要充分了解这些性能特点才能更好地选择合适的恶臭气体治理方法进行治理,为此,就其先为大家介绍光解净化法的一些性能特点: 第一、技术原理这种恶臭气体治理方法需要采用专业的光解净化设备装置,这种设备主要是利用高能的UV紫外线将恶臭气体中的物质分子链进行裂解从而改变恶臭气体物质的化学结构,最后在紫外线下氧化成没有危害的物质,达到净化的效果。第二、除臭效率高光解净化恶臭气体治理方法的净化效果十分良好,净化后的物质完全超过国家在1993年颁布的恶臭物质排放标准,比起生物分解法、等离子法、活性炭吸附法等除臭方法的效率都高效,可以算是目前最好的恶臭气体治理方法。第三、可处理气体成分多经研究表明,恶臭...
2017 - 08 - 10
随着城市环境不断被工业发展产生的恶臭气体所污染,促使相关环保部门愈来愈关注恶臭气体治理问题,开始陆续购买各种相关的治理设备,但因市面上生产恶臭气体治理设备的厂家多种多样,为使相关人员更好选择厂家,接下来就介绍一些选择厂家的要点知识:第一、看品牌相关人员在购买恶臭气体治理设备时首先需要看厂家的品牌,目前为使设备能够有效处理恶臭气体,厂家品牌都是经过国家检测且受地方保护,但尽管如此,用户仍应该选择品牌较响亮、知名度较高的一些品牌,因为这些品牌厂家都会拥有省级环境保护协会的相关保证,同时这些厂家还会与此签订一些相关的合作协议,购买时能够得到一定的价格优惠,促使最大化满足双方的需求。第二、看技术因为目前释放到空气中的大多数废弃成分十分复杂且种类繁多,由此对售卖恶臭气体治理设备厂家提供的设备使用要求比较高,这就要求该厂家的技术力量具有一定的实力,选择时需重点从治理效率和运行成本这两方面考察设备的技术...
2017 - 08 - 10
城市污水处理厂、垃圾站和化工厂等地方在进行废弃物处理时常常会散发出让人难以接受的恶臭气体从而影响城市空间的生活环境。由此,恶臭气体治理成为当前环境保护专家关注的重点内容之一,为有效缓解城市空气质量,专业人员通过近年来的研究得出以下这几种恶臭气体治理的方法: 第一、光解催化氧化法这种方法在进行恶臭气体治理时主要是将高能的紫外线光束与TiO2和空气中的相关物质发生相应的化学反应从而产生臭氧气体和羟基自由基,这两类气体在一定的条件下可以和恶臭气体发生分解氧化反应并且在强紫外线下恶臭气体的链结构会发生断裂从而开始转化为无臭味无毒的化合物气体包括生成水和二氧化碳,最终排放到大气中。第二、生物除臭法生物除臭法最重要的是保证水、微生物和氧同时存在的条件,以此条件利用微生物所具有的生理代谢功能将具有臭味的气体和物质进行氧化分解并转化从而达到恶臭气体得到治理的目的。这种恶臭气体治理方法重点需要利用...
2017 - 07 - 20
VOCs治理即挥发性有机物治理,对于空间环境的安全、人体健康安全有着深远意义,尤其对于京津冀等环境污染较严重的地区,挥发性有机物治理势在必行。随着我国对于两型社会建设的逐渐加快,对诸多地理空间的环境指标要求提升,对于各企业污染物排放严格限制;传统的活性炭吸附回收已远远不能满足治理要求,沸石转轮吸附浓缩应运而生,那么它比活性炭VOCs治理好在哪里呢? 第一不产生危废活性炭吸附是传统VOCs治理的重要方式,但是活性炭在高温下会自燃,因为脱附温度必须控制在一定范围内,导致脱附不完全,长期下来就形成了含VOCs的危险废弃物。这些危险废弃物的处理逐渐成为环保领域新的难题。而沸石不可燃,脱附温度可高达200度,脱附完全,不会形成危险废弃物。第二运行维护成本低活性炭由于自身原因,脱附不完全,日积月累后,吸附能力下降,吸附容量饱满后,必须更换,这就造成维护成本的上升。第三污染物处理能力稳定活性炭...
Copyright © 2005 - 2013 利发国际(北京)环境科技有限公司
地址:中国·北京市大兴区生物医药产业基地庆丰西路27号
电话: 86 010-6125 8796
传真: 86 010-6125 8796
邮编:330520
X
1

QQ设置

3

SKYPE 设置

4

阿里旺旺设置

5

热线电话

  • 010-6125 8796
6

微信二维码

返回顶部
展开
亲,扫一扫<br/>浏览手机云网站
亲,扫一扫
浏览手机云网站
亲,扫一扫<br/>浏览手机云网站
亲,扫一扫
浏览微信云网站